

Round-Robin Scheduling

The round-robin (RR) scheduling algorithm is designed especially for time sharing systems. It is similar to FCFS scheduling, but preemption is added to switch between processes. A small unit of time, called a time quantum (or time slice), is defined. The ready queue is treated as a circular queue.(Note: Arrival time is given in Gantt chart)

Example

Process	Burst Time
P1	24
P2	3
P3	3

Time quantum = 4 ms

Gantt chart

p1	p2	p3	p1	p1	p1	p1	p1
0	4	7	10	14	18	22	26

The average waiting time is $17/3 = 5.66$ milliseconds.

Waiting time for P1 = $26 - 20 = 6$

P2 = 4

P3 = $7 (6+4+7 / 3 = 5.66 \text{ ms})$

The performance of the RR algorithm depends heavily on the size of the time-quantum. If the time-quantum is very large(infinite) then RR policy is the same as FCFS policy. If time quantum is very small, RR approach is called processor sharing and appears to the users as though each of n processes has its own processor running at $1/n$ the speed of a real processor.

User Problems:**Problem 1:**

Consider the set of 5 processes whose arrival time and burst time are given below-

Process Id	Arrival time	Burst time
P1	0	5
P2	1	3
P3	2	1
P4	3	2
P5	4	3

If the CPU scheduling policy is Round Robin with time quantum = 2 unit, calculate the average waiting time and average turnaround time.

Solution:

Ready Queue-

P5, P1, P2, P5, P4, P1, P3, P2, P1

Gantt Chart

Now, we know-

- Turn Around time = Exit time – Arrival time
- Waiting time = Turnaround time – Burst time

Process Id	Exit time	Turn Around time	Waiting time

P1	13	$13 - 0 = 13$	$13 - 5 = 8$
P2	12	$12 - 1 = 11$	$11 - 3 = 8$
P3	5	$5 - 2 = 3$	$3 - 1 = 2$
P4	9	$9 - 3 = 6$	$6 - 2 = 4$
P5	14	$14 - 4 = 10$	$10 - 3 = 7$

Now,

- Average Turnaround time = $(13 + 11 + 3 + 6 + 10) / 5 = 43 / 5 = 8.6$ unit
- Average waiting time = $(8 + 8 + 2 + 4 + 7) / 5 = 29 / 5 = 5.8$ unit

Problem 2:

Four jobs to be executed on a single processor system arrive at time 0 in the order A, B, C, D. Their burst CPU time requirements are 4, 1, 8, 1 time units respectively.

The completion time of A under round robin scheduling with time slice of one time unit is-

1. 10
2. 4
3. 8
4. 9

Solution:

Process Id	Arrival time	Burst time
A	0	4
B	0	1
C	0	8
D	0	1

Ready Queue-

C, A, C, A, C, A, D, C, B, A

0	1	2	3	4	5	6	7	8	9	14
A	B	C	D	A	C	A	C	A	C	

Gantt Chart

Clearly, completion time of process A = 9 unit.

Thus, Option (D) is correct.